17.5. WGAN (Wasserstein Generative Adversarial Networks)#
Show code cell source
from typing import Any, Union, Callable, Type, TypeVar
from tqdm.std import trange,tqdm
import numpy as np
import numpy.typing as npt
import pandas as pd
import matplotlib.pyplot as plt
import plotly.express as px
import seaborn as sns
from PIL import Image
import cv2
import requests
# pytorch関連のimport
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from src import utils
SEED = 2023_7_17
utils.set_seed(SEED)
17.5.1. WGANの仕組み#
17.5.2. 実験#
17.5.2.1. 実験結果#
17.6. 参考文献#
17.6.1. 論文等#
- ACB17
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, 214–223. PMLR, 2017.